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2 Abstract 

Optical methods for surveying populations are becoming increasingly popular. These meth-

ods often produce hundreds of thousands to millions of images, making it impractical to an-

alyze all the images manually by human annotators. Computer vision software can rapidly 

annotate these images, but their error rates are often substantial, vary spatially and are 

autocorrelated. Hence, population estimates based on the raw computer automated counts 

can be seriously biased. We evaluated four estimators that combine automated annotations 

of all the images with manual annotations from a random sample to obtain (approximately) 

unbiased population estimates, namely: ratio, offset, and linear regression estimators as well 

as the mean of the manual annotations only. Each of these estimators was applied either 

globally or locally (i.e., either all data were used or only those near the point in question, to 

take into account spatial variability and autocorrelation in error rates). We also investigated 

a simple stratification scheme that splits the images into two strata, based on whether the 

automated annotator detected no targets or at least one target. The 16 methods result-

ing from a combination of four estimators, global or local estimation, and one stratum or 

two strata, were evaluated using simulations and field data. Our results indicated that the 

probability of a false negative is the key factor determining the best method, regardless of 

the probability of false positives. Stratification was the most effective method in improving 

the accuracy and precision of the estimates, provided the false negative rate was not too 

high. If the probability of false negatives are low, stratified estimation with the local ratio 

estimator or local regression (essentially geographically weighted regression) are best. If the 

probability of false negatives are high, no stratification with a simple global linear regression 

or simply the manual sample mean alone is recommended. 

Keywords: Underwater imagery; Computer vision; Population estimation; Scallop; Geo-

graphically weighted regression 
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28 1 Introduction 

Underwater optical surveys of fish and invertebrate populations are becoming increasingly 

common (e.g., Davis et al., 1992; Gallager et al., 2005; Howland et al., 2006; Yoklavich et 

al., 2007; Rosenkranz et al., 2008; Taylor et al., 2008; Tolimieri et al., 2008; Singh et al., 

2013; Gallager et al., 2014). Such surveys have numerous advantages over traditional surveys 

using fishing gear, including being able to observe populations at all scales under natural 

conditions, and detection efficiency that potentially approaches 100%. 

Optical surveys often generate hundreds of thousands to millions of images. Manually 

annotating all of the images (i.e., having people identifying the targets of interest in each 

image) would thus often be impractical. The traditional statistical approach to this prob-

lem would be to only manually annotate a sample of the images and obtain inferences on 

the population (which for our purposes is defined as the targets contained in all of the col-

lected images) based on the sample. Alternatively, computer vision software can produce 

“automated annotations” that identify the targets in every image. However, automated an-

notators can make errors, both because they may not detect some targets (“false negatives”) 

and because the annotator mistakenly identifies some objects (“distractors”) as targets when 

they are not (“false positives”). Thus, analyses based on the raw automated counts can be 

seriously biased. Errors from automated annotations are often autocorrelated and spatially 

non-stationary due to, for example, a certain region having high densities of distractors or 

reduced visibility. Manual annotations of a sample of the images can help detect and correct 

for errors by the automated annotators, in which case the goal is to produce estimators for 

the population, based on the combination of automated and manual annotations that are 

more efficient than using the manual annotations alone (i.e., the variances of estimators are 

less than the variance of the sample mean of the manual images), as well as being at least 

approximately unbiased. 

Although there have been numerous studies devoted to automated detection and classifi-

cation of marine organisms (e.g., Culverhouse et al., 2006; Marcos et al., 2008; Spampinato 

et al., 2008; Beijbom et al., 2012), these studies usually conclude with estimating confusion 

matrices or error rates. The final task of obtaining estimates of the population of targets in 
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57 all images from automated annotations that contain errors has received less attention. Solow 

et al. (2001) considered the situation where classification of plankton samples may be in 

error, which were corrected by inverting the confusion matrix (see also Hu and Davis, 2006; 

Verikas et al., 2015). The problem they considered is simpler than the one we are considering 

here because they were only concerned with classification of an object but not its detection, 

and because errors were assumed to be stationary and not autocorrelated. Beijbom (2014) 

analyzed what we have termed the offset estimator to bias-correct automated counts using 

a random sample of manual annotations from a cost reduction point of view. 

The purpose of this paper is to explore and compare performance of several methods 

for estimating population abundance (or biomass) based on automated annotations of all 

images combined with manual annotations of a random sample of the images. This study is 

motivated by surveys of sea scallops (Placopecten magellanicus) using the HabCam (Habitat 

Mapping Camera System) towed underwater camera system (Howland et al. 2006; Taylor et 

al., 2008; NEFSC, 2014; see Figure 1 for an example of HabCam images of sea scallops and 

sand dollars, a common distractor). Computer vision software for detecting sea scallops is 

continuing to be developed (Dawkins et al., 2013; Kannappan et al., 2014; Gallager et al., un-

published). The U.S. sea scallop fishery has annual ex-vessel revenue averaging around $500 

million in recent years, so obtaining accurate and precise estimates of sea scallop abundance 

is of immediate practical significance. 

2 Methods, Theory, and Calculation 

2.1 Global Population Estimators 

We tested four different estimators of population size (i.e., the number of true targets in an 

image set) based on a combination of manual and automated annotations. In the following, 

it is assumed that each image has been annotated by software, but only a random sample 

of n images out of a total of N images have been annotated manually, and the manual 

annotations are without error (it is straightforward to extend the theory to cases where only 

a sample has been annotated by software). Let Xi and Yi be the number of targets detected 
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84 in the ith image by the automated and manual annotators, respectively. 

Four global estimators for the total number of targets in the images, Z, are: 

¯Manual sample only: Zm = Y N (1) 

¯ Y
Ratio estimator: Zr = µX N (2)¯ XXN XnN 
Offset estimator: Zo = Xi − (Xj − Yj ) (3) 

n 
i=1 j=1 XN  

Regression estimator: Zg = α + βXi (4) 
i=1 

 ¯ where X and ¯ Y are the mean number of targets detected by automated and human annota-

tors in the sample of images that have been manually annotated, µX is the mean number of 

targets over all images detected by the automated annotator, and α and β in equation (4) 

are the intercept and slope obtained by regressing the automated vs. manual annotations. 

The last three methods can be considered as ways to adjust, or bias correct, the automated 

counts based on the comparison between the automated and manual counts in the sample. 

The ratio estimator adjusts the automated counts by a multiplicative constant, the offset es-

timator adjustment by an additive constant, and the regression estimator combines additive 

(intercept) and multiplicative (slope) adjustments. 

Although the ratio estimator (2) is biased, this bias is negligible for all the simulated 

¯ datasets because the coefficients of variation of X ¯and  Y are both smaller than 0.1 (Cochran, 

1977), which should typically be the case because the sample sizes for both the automated 

and manual annotations will usually be large. An approximate bias correction can be applied 

if this is a concern. The Appendix derives analytically the conditions when the variance of the 

ratio estimator applied to a random sample is lower than manual sampling alone. Beijbom 

(2014) similarly gave analytic derivations of properties of the offset estimator of a random 

sample. 

2.2 Local Population Estimators 

The automated annotator error rate may vary spatially, depending on factors such as water 

clarity, substrate type, and the densities of targets and distractors. All these factors, and 
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105 therefore the automated annotator error rates, are typically spatially autocorrelated. If 

this is the case, it may be more efficient to bias-correct the automated annotations locally, 

rather than using a single global correction as in equations (1)-(4). In addition, the spatial 

distribution of the population is often of interest. If the error rates vary spatially, the 

correction for these errors also needs to vary accordingly to accurately reflect the actual 

distribution of the population. 

For the local estimators, the correction factor is calculated for each data point, and the 

estimators are similar to the global estimators described above except that only data less 

than a distance, or “bandwidth”, hj from the point j are used, and the data are weighted as 

a decreasing function of the distance from the target data point, using an adaptive bisquare 

distance decay kernel function: 

⎧� �⎪⎪ 2
 d⎨ (j,k)
1 − ( )2 d(j,k) ≤ hj

hw j(j,k) = (5)⎪⎪⎩0 d(j,k) > hj , 

where w(j,k) is the weighting factor of point k that is used to calculate the bias correction 

factor for point j, and d(j,k) is the distance between points j and k. The bandwidth is 

adapted to the density of the data; it is larger when data are sparser and smaller when 

data are denser. Even though the bandwidth may vary by location, the number of data 

points within the bandwidth is the same across locations. The bandwidth (or number of 

data points to be included at each location) is determined by minimizing the leave-one-out 

cross-validation squared error: 

Xn h i2 
 V = ˆC Yj − Y= j (hj ) , (6) 

j=1 

 ˆ where Y= j (hj ) is the fitted value of Yj with the data points where point j is omitted from 

the estimation process (Guo et al., 2008). 

The local method for the regression estimator is essentially a form of geographically 

weighted regression (GWR) that is used specifically for situations when the relationship be-

tween variables differs across space (i.e., spatial non-stationarity and spatial autocorrelation; 

Brunsdon et al., 2008). Compared to standard (global) regression models where a single pa-
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129 rameter set is estimated for the entire dataset, GWR estimates regression parameters that 

vary for each data point based on data that is in the local neighborhood of that point. 

2.3 Stratification 

Population densities from underwater images are often “zero-inflated”, i. e., a high proportion 

of photos contain no targets. In such a case, the images can be separated into two strata: one 

where no targets were detected by the automated annotator, and the other where at least 

one target is detected. Manual annotations are then allocated among the two strata based on 

the automated annotations and their overall false negative rates, using approximate Neyman 

optimal allocations. For this purpose, the standard deviation of the true target counts in p 
the zero stratum, s0, is: Z0PS (1 − PS ), where Z0 is the number of targets in the zero 

stratum (i.e. the number of false negatives), PS is the probability of detecting a target by 

the automated annotator, and 1−PS is the probability of a false negative. In the simulation, 

Z0 and PS are known, but in practice, they would have to be estimated either from previous 

data or by obtaining a small sample of manual annotations prior to the allocation. The 

standard deviation of targets in the non-zero stratum, s1, is approximated by the standard 

deviation of the automated counts in this stratum. The Neyman optimal allocation is then: 

nNmsm 
nm = P1 , (7) 

m=0 Nmsm 

where n is total number of manual sample size, and Nm is the total number of images in 

stratum m. 

2.4 Simulation Design 

We tested the performance of the above methods using simulated data. The simulation 

design is based on the US sea scallop population characteristics as observed by the HabCam 

survey. The simulation domain is 70 km (longitude) by 140 km (latitude), with a 50 m 

grid size, roughly corresponding to the density of annotated images in actual data sets. The 

spatial distribution of sea scallops is non-stationary due to the influences of physical and 

biological environment including current, depth, and predator distributions (Brand, 2006). 
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154 Therefore, we assumed that the simulated scallop population has large-scale smooth trends 

in its expected mean (first-order effect) that are added to a stationary autocorrelated random 

field (second-order effect; Cressie, 1993). We simulated the variations of global mean density 

using a double logistic function that is constant with latitude but varies with longitude: 

⎧ ⎪⎪ 1 l⎪⎨ l  max ⎪ ≤
1 + exp (−a(l − b)) 2 

p(l) =  (8)⎪⎪ 1 lmax ⎪ l > ,⎩⎪ l 2
1 + exp (a(l − b − max 

))
2 

where l is longitude, lmax is the maximum longitude in the surveyed area, and a and b are 

the parameters that determine the shape of the logistic curve. The simulated first-order 

effects are high in the middle and decrease logistically toward the left and right edge of the 

simulation domain, which is typical of actual scallop distribution patterns (Hart, 2006). The 

second-order effects were simulated using stationary Gaussian random fields with a spherical 

isotropic covariance structure (Cressie, 1993): 

⎧ ⎪⎪⎪⎪  d ⎪0 = 0⎨ 
γ(d) = 3 ⎪c d 1 d 3⎪ 0 + c1{ − ( ) } 0 < d ≤ r, (9)⎪ 2 r 2 r ⎪⎪⎩c0 + c1 d ≥ r 

where c0, c1, and r are the nugget, partial sill, and range parameter, respectively. The 
c

nugget/sill (n/s) ratio  0 
( ) determines randomness and r determines the aggregation 
c0 + c1 

size of the second-order effects. We chose the simulation parameter values based on estimates 

from the actual HabCam data. 

To reflect the highly zero-inflated nature of scallop distributions, those locations where the 

sum of the first-order and second-order effects values were smaller than its 90th percentile 

were set to zero. The simulated scallops count for the remaining 10% is simply the sum 

of the first- and second-order effects (Figure 2). The resultant simulated data is patchy, 

zero-inflated, and has a large scale trend along one direction, consistent with actual scallop 

populations. The shape and direction of tracks used to survey the simulated population 

was designed to mimic the actual HabCam survey design, where more effort was put in the 
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175 middle high density area (Figure 2; NEFSC, 2014). A total of 9,001 photos were simulated 

along the track (Figure 2). 

False positives were simulated by using distractors. The two most common distractors 

for sea scallops are sand dollars (Echinarachnius parma; Figure 1) and dead scallop shells 

(Dawkins et al., 2013; Kannappan et al., 2014). The distribution of sand dollars are typically 

independent or negatively correlated with scallops, whereas dead scallop shells would be 

expected to be positively related to (live) scallops. The spatial distribution of distractors 

were simulated similar to scallops, but the distractor’s patches were assumed larger (larger 

range) and less noisy (smaller n/s ratio) than the scallop target distribution, based on actual 

observations of sand dollars (Figure 2). 

Water visibility may affect automated annotation accuracy by reducing the probability 

of detecting a target or a distractor. We simulated water visibility to be trendless but with 

spatial autocorrelation. It other words, it is a random field with no first-order effect. It was 

assumed to have the same noise level but larger patch size as the distractor (larger range; 

Figure 2). 

2.5 Simulation of Automated Count Data 

The simulated manually annotated data are assumed to have no errors. For the computer 

automated counts, each simulated target (S) and distractor (D) has a probability of being 

detected as a target by the automated annotator: 

PS = (1 − F 1S )(1 − F 2S ) and PD = 1 − (1 − F 1D)(1 − F 2D), (10) 

where the F 1S and F 1D are the probabilities of a false negative and false positive with good 

water visibility, and F 2S and F 2D are the reduced probabilities of detecting targets and 

distractors due to water visibility. In our simulations, it is assumed that F 2S = F 2D. The 

simulated total number of targets reported by the automated annotator in the ith image is: 

XM  
Xi = (Sim + Dim), (11) 

m=1 

where M is the total number of objects simulated within image i, Sim is the number of 
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199 correctly identified targets (true positives minus false negatives), and Dim is the number of 

distractors incorrectly identified as targets (false positives). 

2.6 Scenarios Tested 

To understand whether the estimation methods are robust to changes in the environment, 

species distributions and the capabilities of the automated annotator, we tested the perfor-

mance of these methods by varying the following quantities: 

(1) Automated annotator’s performance: probability of a false negative/positive (F 1S and 

F 1D) from 0 to 1 by 0.05; 

(2) Water visibility: good, moderate, or poor (expected value of F 2 = 0, 0.05, 0.1); 

(3) Correlation between scallop and distractor distribution: negative, zero, or positive; 

(4) Degree of spatial autocorrelation of distractors: low, medium, and high; 

(5) Percent of total sample size that was annotated manually: 1%, 3%, 7%, 11%, and 15%. 

A base case was selected where the water visibility is good, the correlation between the 

spatial distribution of scallops and distractors is negative, the spatial autocorrelation of 

distractors is medium, and manual annotations were performed on 7% of the photographs. 

The base case was then varied for each of the attributes (2)-(5) individually, keeping the 

other three at their base case values. Thus, a total of 14 scenarios were simulated. For each 

choice of (2)-(5), F 1S and F 1D were varied from 0 to 1 by 0.05 increments, as specified in 

(1). 

For all scenarios, scallops have high densities in middle longitudes of the simulation do-

main (simulated using equation 8), and water visibility has no first-order effects. Distractors 

have high first-oder effects on the left (which used only the second part of the equation 8 on 
lmax 

l ≤ part of the simulation domain), except for the scenarios of zero and positive corre-
2 

lations between scallop and distractor distribution where there are no effects or high effects 

in the middle, respectively. The partial sill, n/s ratio, and range parameter used to simulate 

second-order effects are 0.18, 0.6, and 200 for scallops, 0.18, 0.6, and 400 for distractors, 

and 0.18, 0.6, and 600 for water visibility. For the scenarios where distractors have high 

and low autocorrelation, the n/s ratio is 0.3 and 0.9, respectively. For the scenarios where 
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227 water visibility is moderate or poor, the effects of water visibility on the probability of a false 

negative and false positive is one or two times, respectively, compared to the corresponding 

scenarios of good water visibility. 

For each scenario, the manual annotation subset was resampled 30 times. For each 

iteration, we tested the combinations of the four estimators applied either globally or locally, 

and using two strata or one stratum (unstratified) to allocate manual annotations, resulting 

in 16 different estimation methods. 

For stratified estimation, the ratio estimator is undefined in the zero stratum, so the mean 

of the manual annotations in this stratum was used instead. Since the offset and regression 

estimators reduce to simply taking the mean of the manual annotations in the zero stratum, 

all four methods produce the same estimate in this stratum, so any differences among the 

methods with stratification stem from the non-zero stratum. 

2.7 Field Data Analysis 

HabCam images from the US sea scallop survey (NEFSC, 2014) were used to illustrate 

the usefulness of the methods discussed above on real data. For testing purposes, all the 

images were annotated using computer vision software (Gallager et al., unpublished) and 

also manually annotated, so that the estimates can be compared to their true values. 

The automated annotator used a series of features including texture, color, and shape. 

A kernel of 100 x 100 pixels was run through each image left to right, top to bottom, 

extracting each feature set resulting in a feature vector of length 480 by width 3 (texture, 

color, and shape). Texture features were extracted using a 2-dimensional Gabor wavelet 

convolved with Gaussian kernels at 360 orientations for each pixel box providing rotational 

independent texture features (Gallager and Tiwari, 2008). Color was extracted in L*A*B* 

color space using the color angle approach, where the standard deviation of the gradient 

between the pixel radius at 10 degree increments was extracted with 128 colors (Gallager 

and Tiwari, 2008). For each kernel, a Canny edge detection algorithm was used followed by 

extraction of Fourier shape descriptors. A Principal Component Analysis was run to reduce 

data dimensionality from > 4000 to 128 principal components. Finally, a linear Support 

Vector machine was trained on 3800 images containing scallops of various sizes as well as 
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256 images containing no scallops over varying substrate conditions. The result was a probability 

of the presence of a scallop; a scallop was considered as detected if this probability was greater 

than 90%. 

One out of every 50 images collected were annotated manually as well as with software 

(Table 1), and this collection of images served as the data for our analysis. Data from 

three regions with various probability of a false negative were selected. The probability of 

a false positive could not be defined for our datasets because number of possible distractors 

for each image was not identified. For each region, the manual annotations from a 7% 

random subset of the images were used for estimation along with automated annotations 

from each image; error rates could therefore be assessed because each image in the datasets 

were annotated manually, even though only a sample of the manual annotations were used 

in the analysis. The manual annotation subset was resampled 2000 times, and the various 

estimation methods were applied to each iteration. 

In the field, factors such as vehicle altitude, depth, etc. may also influence the performance 

of the estimators. We tested an additional method that included auxiliary variables in the 

two-strata local regression: 

X5 

Yj = a0(uj , vj ) + a1(uj , vj )Xj + ab(uj , vj )Abj + �j (12) 
b=2 

where (uj, vj ) is the coordinates of point j and ab(uj , vj )’s are the coefficients of variables A 

including altitude, depth, squared depth, and latitude at location (uj , vj ) point j. 

2.8 Evaluation of Methods 

For both simulation and field data analysis, mean squared error (MSE) and mean absolute 

error (MAE) were used as the principal measures of precision and bias: 

vuuXK XK 
1 t 1 

MSE = (Z 2 

 k − µ) and MAE = |Zk − µ|, (13)
K K 

k=1 k=1 

where Z is the population estimates based on automated and manual annotations, µ is the 

true population abundance, and K is the number of iterations. These were reported relative 
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279 to the global unstratified manual sample mean (M1G): 

MSE − MSEM1G MAE − MAE
MSE

M1G

re = and MAEre = . (14)
MSEM1G MAEM1G 

MAE and MSE both reflect precision as well as bias but MSE weights more on large errors 

than small ones. 

3 Results 

3.1 Simulation Results 

Combining automated and manual annotations using our methods increased precision of the 

estimates over manual counts alone by up to a maximum of 73%, whereas using the uncor-

rected automated counts could decrease both accuracy and precision up to 717%, compared 

to using manual counts only (Tables 2 and 3). Increasing the number of manual samples 

increased the precision of all methods, but only by a modest amount (up to 15%). 

In the base case, splitting the annotations into two strata was the most effective way of 

improving estimation precision, except at very high false negative rates where stratification 

degraded the estimates (Figures 3 and 4). When both false negative and false positive rates 

are low, the use of automated data for stratification and/or estimation substantially improves 

the precision and accuracy of the estimates regardless of the estimator used. Local models 

were superior to global models only when stratification was employed. For one-stratum 

allocation and when the probability of a false positive is high, the ratio and regression 

estimator performed better, whereas the offset estimator was better when the probability 

of a false negative is high but false positive rate is low. Similar patterns were observed for 

the other scenarios tested, i.e., the performance of the bias correction methods we tested are 

robust to changes in the environment and species distributions. 

The probability of a false negative is the key factor determining the most effective bias 

correction methods, regardless of the level of probability of a false positive (Tables 2-5). 

When the probability of a false negative is low, nearly all the methods can improve the 

accuracy and precision of the population estimates, but stratification with the local ratio or 

the local regression estimator was generally superior. If the probability of false negatives is 
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305 high, no stratification with a simple global linear regression or manual sampling alone tended 

to have the best performance. If in addition the false positive rate is low, the global offset 

estimator also performs well. 

3.2 Field Data Analysis Results 

Results from the field data analysis were consistent with those from the simulations. Esti-

mations of the mean using automated annotations alone were 63% to 498% higher than the 

simple manual sample mean (Table 1). For the region with low false negative rates (0.31), the 

two-strata local regression without auxiliary variables and two-strata local ratio estimator 

were superior; these increased precision over the simple manual sample mean by up to 51% 

(Table 1). When the false negative rate was higher (0.73-0.75), global regression or simply 

the manual sample mean were the best, with the global regression model improving precision 

by at most 11% over the simple manual sample mean. The offset estimator performed better 

than the ratio estimator in one case, likely because the false positive rate of this dataset is 

low; however, this is not totally clear since the false positive rates were not available for all 

of our field data. Auxiliary variables did not improve the performance of local regression for 

these data. 

4 Discussion 

The results indicate that combining even a mediocre automated annotator with manual 

annotations may be able to improve statistical efficiency over manual annotations alone when 

using the methods presented here. The combination of automated and manual annotations 

outperformed manual or (unadjusted) automated annotations alone, even when the false 

positive and false negative rates were as high as 0.5. The results from both simulations and 

field data analysis are consistent, and indicate that probability of a false negative is the 

key factor determining the best estimation method. The probability of a false positive does 

matter to some extent, especially when the probability of a false negative is higher, but even 

in this case, it is not the main factor determining the best method. 

Stratification based on zero and positive automated counts is the most effective technique 
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332 to improve precision except at very high false negative rates. Stratification directly improves 

precision when the within-strata variance is less than the between strata variance (Cochran, 

1977), which is likely to be the case for even a moderately effective automated annotator. 

In addition, the allocation of manual samples between the two strata often further increases 

performance by allocating disproportionately more manual samples to the more variable 

stratum. Stratified estimates are in particular more precise at high false positive but low 

false negative rates. The zero stratum has no false positives, and contains a limited number 

of actual targets when the false negative rates are low. The zero stratum thus tends to have 

a low variance, so the number of targets in this stratum can be estimated precisely by a 

relatively small number of manual samples. This allows for higher sampling rates in the 

non-zero stratum, increasing the precision there. 

The simple two-strata stratification presented here is natural for zero-inflated data such 

as in our examples. In some cases, more complex stratification may give further benefits. For 

example, there could be three strata, composed of where the automated annotator detects 

zero, one or more than one targets. We implicitly assumed for simplicity that the cost of a 

manual annotation is the same in each stratum. In reality, the labor cost of annotating an 

image tends to go up with the number of targets in the image. If this cost function is known, 

it can be taken into account in the optimal allocation among strata (Cochran, 1977). 

In real world situations, the false negative (and positive) rates may be uncertain. In such 

cases, we recommend manually annotating a small sample of images to roughly estimate 

this rate, and select the manual sampling strategy (e.g., stratification scheme) and estimator 

based on this information. The optimal strategy is fairly robust to modest changes in the 

automated annotator error rates, so only a crude estimate of the false negative rates is needed 

to design a sampling strategy. 

The offset estimator, by its definition, can account for errors that are independent of the 

target density, but less efficient in tracking errors that vary with the targets. Conversely, the 

ratio estimator is more effective without stratification when there are false negatives but few 

false positives (Figures 3 and 4), because the ratio estimator can take into account errors 

that are proportional to the target density. The precision of the ratio estimator depends on 

the correlation between automated and true counts (see Appendix); false positives directly 
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362 reduce this correlation. 

In principle, the regression estimator should be able to account for both these types of 

errors, but it has the disadvantage of having two parameters that can be confounded with 

each other, especially at low sample sizes and when the data are zero-inflated. For stratified 

local regressions, the manual sample size used to estimate the regression parameters at each 

location is low, and might be one of the reasons why its performance is slightly lower than the 

stratified local ratio estimator. The difference in performance of stratified local regression 

estimator and stratified local ratio estimator was larger when the manual sample size is only 

1% and became smaller as the manual sample size increased (Tables 2 and 3). 

There are nonetheless some advantages of regression methods. For example, multiple 

regression can be used if there is more than one automated annotator available, using counts 

from each automated annotator as predictors. Even though in our example field data it 

was not effective, auxiliary variables such as water depth, latitude, or substrate type may 

sometimes also be useful as predictors in a multiple regression. 

Local estimation methods can improve estimates when the distribution of targets or 

errors is autocorrelated. In particular, false positives induced by distractors such as sand 

dollars and dead scallop shells are typically autocorrelated. False negative rates could be in 

some cases also autocorrelated (caused by e.g., poor visibility), but this would normally be 

a weaker effect than false positives if it exists at all. Stratification isolates the false positives 

in one stratum, which may be the reason that it enhances the effectiveness of using local 

estimation methods. The benefits of local estimation methods are however minor compared 

to stratification, even in the presence of substantial autocorrelation. 

Although computer vision methods are rapidly improving, it is unlikely that automated 

detection of underwater organisms will be error free in the foreseeable future. Many marine 

organisms are cryptic, and can adjust their pattern and coloration to match their surround-

ings, thus making it difficult to totally eliminate false negatives. For scallops in particular, 

false negatives can be caused by colonization of their shell by epifauna or the shell being 

covered by marine snow or sediments. In addition, a small percentage (∼5-10%) of sea 

scallops are “albinos”, with white upper shells, that are difficult to distinguish from dead 

scallop shells. While we believe that the false positives induced by sand dollars can be 
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392 reduced considerably compared to present methods, it is also unlikely that false positives 

can be completely eliminated (for example, it is sometimes difficult to distinguish a dead 

scallop shell from a live scallop). Thus, combining automated and manual annotations using 

the methods described here is likely to continue to be an improvement over using either 

automated or manual annotations alone. 

While we have focused on automated annotations of marine organisms, our methods are 

applicable to a much wider set of problems. For example, our methods could be employed 

whenever there are at least two observers counting the same things, one of whom is an 

expert (or is a reference collection) who is considered error free but only observes a sample. 

Annotations using crowd-sourcing (Simpson et al., 2014) may be subject to higher error rates 

than those done by experts, which can be corrected using the techniques presented here. 

Our methods also are applicable to automated or crowd-sourced annotations of a variety 

of targets beyond those underwater, such as targets from aerial photography, surveillance 

cameras, medical imaging and testing, and industrial quality control. 
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Table 1: Relative mean squared error (MSEre) and relative mean absolute error (MAEre) for 
each estimator, using unstratified (one-stratum) or two strata estimation, and either local 
or global estimation for three sets of actual HabCam field data. Error rates are relative 
to the global unstratified manual mean, which is used as a baseline. “AUTO” represents 
MSEre or MAEre calculated using only the automated annotations. “L+Var” represents 
local regression with auxiliary variables. The dark and light grey-shaded entries represent 
the best and second best method, respectively. 

Manual Mean Ratio Est. Offset Est. Regression Est. 

Sample False Stat Auto One-stratum Two-strata One-stratum Two-strata One-stratum Two-strata One-stratum Two-strata 

Size Negative Global Local Global Local Global Local Global Local Global Local Global Local Global Local Global Local L+Var 

MSEre 1.68 0 -0.06 -0.04 -0.21 -0.07 -0.31 -0.09 -0.50 -0.02 0.01 -0.02 -0.19 -0.07 -0.26 -0.10 -0.51 -0.04 
5057 0.31 

MAEre 0.78 0 -0.03 -0.02 -0.11 -0.04 -0.16 -0.04 -0.29 -0.01 0.01 -0.00 -0.10 -0.04 -0.14 -0.05 -0.31 -0.08 

MSEre 4.98 0 0.04 -0.04 0.02 -0.06 -0.01 -0.03 0.03 -0.10 -0.05 -0.04 0.02 -0.11 -0.07 -0.03 0.03 0.05 
9610 0.73 

MAEre 1.68 0 0.01 -0.02 0.01 -0.03 -0.01 -0.01 0.01 -0.06 -0.03 -0.02 0.01 -0.06 -0.04 -0.02 0.01 0.01 

MSEre 1.25 0 0.71 0.37 0.16 0.28 2.06 0.89 0.55 0.40 1.90 1.16 1.61 -0.00 0.93 0.37 0.07 0.04 
14856 0.75 

MAEre 0.63 0 0.36 0.17 0.07 0.13 0.88 0.37 0.26 0.18 0.75 0.47 0.62 -0.00 0.47 0.17 0.03 0.02 
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Table 2: Relative mean squared error (MSEre, using the global unstratified manual mean as 
the baseline method) for the five scenarios by types of statistics (M: manual sample mean, 
Ra: ratio estimator, O: offset estimator, and Re: regression estimator), using global (G) 
or local (L), and one-statum (1) or two-strata (2) estimation, along with MSEre calculated 
using only the automated annotations (AUTO). For each scenario, the cell outlined in bold 
is the best method. 
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Table 3: Relative mean absolute error (MAEre, using the global manual mean as the baseline 
method) for the five scenarios by type of estimators. See Table 2 for explanations of the 
notations. 
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Table 4: Proportion of runs with the least mean square error (MSE) for the five scenarios 
by type of estimators. See Table 2 for explanations of the notations. 
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Table 5: Proportion of runs with the least mean absolute error (MSE) for the five scenarios 
by type of estimators. See Table 2 for explanations of the notations. 
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Figure 1: HabCam Images with scallops (left) and its common distractor sand dollars (right). 
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Figure 2: Example simulated distributions of scallops (left), distractors (center; moderate 
autocorrelation and negatively correlated with scallop distribution), and water visibility 
(right; poor) with an over-layed sampling track (red line). The colors represent counts 
per m2 for scallops and distractors and the reduced probabilities of detecting scallops and 
distractors due to poor water visibility. 
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Figure 3: Mean squared error (MSE, indicated by color) at various false negative and false 
positive rates in the base case scenario, by estimator type, global or local estimation, and 
unstratified (one-statum) or two-strata estimation. 
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Figure 4: Mean absolute error (MAE, indicated by color) at various false negative and false 
positive rates in the base case scenario, by estimator type, global or local estimation, and 
unstratified (one-statum) or two-strata estimation. 
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515 Appendix - Analytic derivation of properties of the ratio estimator 

Let Yi be the number of targets in the ith randomly chosen image; it will be assumed that 

manual processing is perfect, so that Yi is also the number of targets that were detected 

manually. Let Xi be the number of targets detected by the automated software in the ith 

image. We will consider the following ratio estimator for the mean number of targets: 

¯Y + Y + ... + Y Y 
T = 1 2 n 

µX = µ (15)
X1 + X2 + ... + X 

X ¯
n X 

¯ ¯ where µX is the mean of the automated counts over all photographs, and X and Y are the 

sample means for the automated and manual counts for a randomly chosen sample of n 

images. Let µX = E(Xi) and µY = E(Yi), σX and σY be the standard deviations of Xi and 

Yi, respectively, and let ρ be the correlation between Xi and Yi. Assuming for simplicity 

that the finite population correction factor is negligible (i.e., that the total number of images 

is large relative to n; this does not affect the main results below), using the approximate 

variance for a ratio (Cochran, 1977), 

Ȳ 1 � σ2 2
   µ µY

Var(T ) = µ 2 Var ' µ2 σ2 + X Y
X X − Y  2ρσ¯ X σY ]/n (16) X µ2 2

X µX µX 

 µY µY 
= [σ2

Y + σX (σX − 2ρσY )]/n. (17) 
µX µX 

Hence, Var(T ) decreases linearly with ρ. If µX = µY and σX = σY , this reduces to Var(T ) ' 

2σ2 
Y (1 − ρ)/n. 

By comparison, a simple random sample of n ¯manual images has variance Var(Y ) = σ2 
Y /n, 

which is the first term of equation (17). Thus, the ratio estimator T has lower variance than 
µ

simply using the manual images (i.e., Var(T ) < ¯Var(Y ) ) if and only if Y 
σX − 2ρσY < 0 , 

µX 

i.e., 
σX µY

ρ > . (18)
2σY µX 

In particular, if the Xis and Yis have the same means and variances, then the ratio estimator 

is an improvement over simple random sampling of the manual images if and only if ρ > 1/2. 
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